Functionally Deregulated AML1/RUNX1 Cooperates with BCR-ABL to Induce a Blastic Phase-Like Phenotype of Chronic Myelogenous Leukemia in Mice

نویسندگان

  • Kiyoko Yamamoto
  • Shinobu Tsuzuki
  • Yosuke Minami
  • Yukiya Yamamoto
  • Akihiro Abe
  • Koichi Ohshima
  • Masao Seto
  • Tomoki Naoe
چکیده

Patients in the chronic phase (CP) of chronic myelogenous leukemia (CML) have been treated successfully following the advent of ABL kinase inhibitors, but once they progress to the blast crisis (BC) phase the prognosis becomes dismal. Although mechanisms underlying the progression are largely unknown, recent studies revealed the presence of alterations of key molecules for hematopoiesis, such as AML1/RUNX1. Our analysis of 13 BC cases revealed that three cases had AML1 mutations and the transcript levels of wild-type (wt.) AML1 were elevated in BC compared with CP. Functional analysis of representative AML1 mutants using mouse hematopoietic cells revealed the possible contribution of some, but not all, mutants for the BC-phenotype. Specifically, K83Q and R139G, but neither R80C nor D171N mutants, conferred upon BCR-ABL-expressing cells a growth advantage over BCR-ABL-alone control cells in cytokine-free culture, and the cells thus grown killed mice upon intravenous transfer. Unexpectedly, wt.AML1 behaved similarly to K83Q and R139G mutants. In a bone marrow transplantation assay, K83Q and wt.AML1s induced the emergence of blast-like cells. The overall findings suggest the roles of altered functions of AML1 imposed by some, but not all, mutants, and the elevated expression of wt.AML1 for the disease progression of CML.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase.

Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25-30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blas...

متن کامل

RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL+ leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance.

Acquired molecular abnormalities (mutations or chromosomal translocations) of the RUNX1 transcription factor gene are frequent in acute myeloblastic leukemias (AMLs) and in therapy-related myelodysplastic syndromes, but rarely in acute lymphoblastic leukemias (ALLs) and chronic myelogenous leukemias (CMLs). Among 18 BCR-ABL+ leukemias presenting acquired trisomy of chromosome 21, we report a hi...

متن کامل

Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML.

Chronic myelogenous leukemia (CML) begins with an indolent chronic phase but inevitably progresses to a fatal blast crisis. Although the Philadelphia chromosome, which generates p210(bcr/abl), is a unique chromosomal abnormality in the chronic phase, additional chromosomal abnormalities are frequently detected in the blast crisis, suggesting that superimposed genetic events are responsible for ...

متن کامل

Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia.

The BCR-ABL fusion protein generated by t(9;22)(q34;q11) in chronic myeloid leukemia (CML) plays an essential role in the pathogenesis of the myeloproliferative disorder status at the chronic phase of the disease, but progression from the chronic phase to blast crisis (BC) is believed to require additional mutations. To explore the underlying mechanisms for BC, which is characterized by a block...

متن کامل

Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia.

The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which the bcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce the bcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013